TextRecognitionDataGenerator

Documentation
Release latest

Edouard Belval

Aug 04, 2022

Contents

Installation 3
1.1 Official package e e e e e e 3
1.2 Fromsource o i i i i e e e e e e e e e e e e e e e e 3
Overview 5
2.1 Mostuseful argumentsl e e e e e e e e e e e e e 5
22 Gettinghelp 5
Tutorial 9
3.1 Justgeneratingdata L. e e e e e 9
3.2 Generating Chinese data L e 9
3.3 TexXtdiStorSIONS v v v v e 11
34 Amoreadvanced USE CASE . . . v . v v v v v e 12
3.5 Manipulating margins e 13
Module 15
Reference 17
5.1 DataGenerator i i e e e e e e e e e e e e e e e e e 17
5.2 BackgroundGeneratoro e e e e e e 17
5.3 ComputerTeXtGenerator v v v v v v e 17
54 DistorsionGeneratort . e e e e e e e e e e e e e e e e 17
5.5 HandwrittenTextGenerator v v v v it e e e e e e e e e e e e e e 17
5.6 StringGenerator L L e e e e e e e e e e e e e e e e 17

TextRecognitionDataGenerator Documentation, Release latest

Since the name is quite long, all subsequent refrences will be under the acronym TRDG.

If you are new to the project, start with the tutorial section!

Contents 1

TextRecognitionDataGenerator Documentation, Release latest

2 Contents

CHAPTER 1

Installation

1.1 Official package

TRDG has a pip package with a matching name.
pip install trdg
Once that is installed, the t rdg binary should be in your PATH.

1.2 From source

If you want to add a new language The easiest way to use the tool is by cloning the official repo.

git clone https://github.com/Belval/TextRecognitionDataGenerator

Then you need to install the dependencies. It is recommended to use a virtual environment for those.

pip3 install -r requirements.txt

If you want to use the handwritten text generation feature, you need to install the —hw dependencies.

pip3 install -r requirements-hw.txt

Once that is done, you can move to the tutorial for tips and tricks on how to use TRDG!

/tutorial.html

TextRecognitionDataGenerator Documentation, Release latest

4 Chapter 1. Installation

CHAPTER 2

Overview

2.1 Most useful arguments

1. -1, ——input_file

Use it when the provided dictionaries do not fit your usecase. Each line will become an image, if your -c
parameter is high enough.

2. —c,——count
Self-explanatory parameter, but one you will probably want to change. The default value is 1000.
3. -1, ——language

This argument is especially important if you want to generate data using a specific script. It changes the dic-
tionary to be used (-1 frisequivalentto -1 dicts/fr.txt), but most importantly it changes the default
fonts to take one that supports the language’s script. Passing a chinese dictionary without changing the language
will cause invalid images to be generated.

4., —t, ——thread_count

Another self-explanatory parameter, yet very important as most computers these days ship with a multi-core
CPU. Setting this to -t 8 makes TRDG create 8 processes to generate the data.

5. —-f,——format

By default, all generated images will be 32 pixels high (or wide if you use —or 1). Now that might be too
small for you. —f allows you to make bigger images.

2.2 Getting help

As with most CLI tools, TRDG’s help is accessible through the —h argument.

If you need more information on a specific argument, find its definition in the reference. If even that does not do, feel
free to open an issue on the official repository.

https://github.com/Belval/TextRecognitionDataGenerator/issues/new

TextRecognitionDataGenerator Documentation, Release latest

usage: trdg [-h] [--output_dir [OUTPUT_DIR]] [-i [INPUT_FILE]] [-1 [LANGUAGE]]
-c [COUNT] [-rs] [-let] [-num] [-sym] [-w [LENGTH]] [-r]
[-f [FORMAT]] [-t [THREAD_COUNT]] [-e [EXTENSION]]
[-k [SKEW_ANGLE]] [-rk] [-wk] [-bl [BLUR]] [-rbl]
[-b [BACKGROUND]] [-hw] [-na NAME_FORMAT] [-d [DISTORSION]]
[-do [DISTORSION_ORIENTATION]] [-wd [WIDTH]] [-al [ALIGNMENT]]
[-or [ORIENTATION]] [-tc [TEXT_COLOR]] [-sw [SPACE_WIDTH]]
[-cs [CHARACTER_SPACING]] [-m [MARGINS]] [-fi] [-ft [FONT]]
[-ca [CASE]]

Generate synthetic text data for text recognition.

optional arguments:

-h, —--help show this help message and exit

——output_dir [OUTPUT_DIR]
The output directory

-i [INPUT_FILE], --input_file [INPUT_FILE]
When set, this argument uses a specified text file as
source for the text

-1 [LANGUAGE], --language [LANGUAGE]
The language to use, should be fr (French), en
(English), es (Spanish), de (German), or cn (Chinese).

—-c [COUNT], —--count [COUNT]
The number of images to be created.

-rs, —-random_segquences
Use random sequences as the source text for the
generation. Set '-let','-num', '-sym' to use
letters/numbers/symbols. If none specified, using all
three.

—-let, —-—-include_letters

Define if random sequences should contain letters.
Only works with -rs

-num, —--include_numbers
Define if random sequences should contain numbers.
Only works with -rs

-sym, —-include_symbols
Define if random sequences should contain symbols.
Only works with -rs

-w [LENGTH], --length [LENGTH]
Define how many words should be included in each
generated sample. If the text source is Wikipedia,
this is the MINIMUM length

-r, ——random Define if the produced string will have variable word
count (with —--length being the maximum)

-f [FORMAT], --format [FORMAT]
Define the height of the produced images if
horizontal, else the width

-t [THREAD_COUNT], —--thread_count [THREAD_ COUNT]
Define the number of thread to use for image
generation
—e [EXTENSION], —--extension [EXTENSION]
Define the extension to save the image with
-k [SKEW_ANGLE], --skew_angle [SKEW_ANGLE]

Define skewing angle of the generated text. In
positive degrees

-rk, —-random_skew When set, the skew angle will be randomized between
the value set with -k and it's opposite

(continues on next page)

6 Chapter 2. Overview

TextRecognitionDataGenerator Documentation, Release latest

(continued from previous page)

-wk, —-use_wikipedia Use Wikipedia as the source text for the generation,
using this paremeter ignores -r, -n, -s
-bl [BLUR], --blur [BLUR]

Apply gaussian blur to the resulting sample. Should be
an integer defining the blur radius

-rbl, —--random_blur When set, the blur radius will be randomized between 0
and -bl.
-b [BACKGROUND], --background [BACKGROUND]

Define what kind of background to use. 0: Gaussian
Noise, 1: Plain white, 2: Quasicrystal, 3: Pictures
—-hw, —--handwritten Define if the data will be "handwritten" by an RNN
-na NAME_FORMAT, --name_format NAME_FORMAT
Define how the produced files will be named. O:
[TEXT]_[ID].[EXT], 1: [ID]_[TEXT].[EXT] 2: [ID].[EXT]
+ one file labels.txt containing id-to-label mappings
-d [DISTORSION], --distorsion [DISTORSION]
Define a distorsion applied to the resulting image. O:
None (Default), 1: Sine wave, 2: Cosine wave, 3:
Random
—do [DISTORSION_ORIENTATION], —--distorsion_orientation [DISTORSION_ORIENTATION]
Define the distorsion's orientation. Only used if -d
is specified. 0: Vertical (Up and down), 1: Horizontal
(Left and Right), 2: Both
-wd [WIDTH], --width [WIDTH]
Define the width of the resulting image. If not set it
will be the width of the text + 10. If the width of
the generated text is bigger that number will be used
-al [ALIGNMENT], —--alignment [ALIGNMENT]
Define the alignment of the text in the image. Only
used if the width parameter is set. 0: left, 1:
center, 2: right

—or [ORIENTATION], —--orientation [ORIENTATION]
Define the orientation of the text. 0: Horizontal, 1:
Vertical

—tc [TEXT_COLOR], --text_color [TEXT_COLOR]

Define the text's color, should be either a single hex
color or a range in the ?,? format.

-sw [SPACE_WIDTH], --space_width [SPACE_WIDTH]
Define the width of the spaces between words. 2.0
means twice the normal space width

—-cs [CHARACTER_SPACING], --character_spacing [CHARACTER_SPACING]
Define the width of the spaces between characters. 2
means two pixels

-m [MARGINS], —--margins [MARGINS]
Define the margins around the text when rendered. In
pixels

-fi, ——-fit Apply a tight crop around the rendered text

-ft [FONT], —--font [FONT]
Define font to be used

-ca [CASE], --case [CASE]
Generate upper or lowercase only. arguments: upper or
lower. Example: —-case upper

2.2. Getting help 7

TextRecognitionDataGenerator Documentation, Release latest

8 Chapter 2. Overview

CHAPTER 3

Tutorial

TextRecognitionDataGenerator comes with an (hopefully) easy to use CLI. The tutorial is actually multiple tutorials,
combined in a single page. Feel free to skip sections that are not relevant to your use case.

3.1 Just generating data

Fun fact, you don’t need to use any command line arguments if you want English data generated using multiple fonts.
Indeed, simply running python3 run.py will create 1000 English, single word images in the out / directory such
as these:

accidented f1ornblendite NONPROPORTIONATELY
PAWNIER guestmoraliatic
sidegroat fruest unaboring VERSA
WATER-FLOOD zysophyllaceous

Now maybe 1000 is too many or too few for your usecase. You can add the —c argument to set how many examples
will be generated.

python3 run.py -c 10

As expected, you will find 10 examples in the out / directory.

3.2 Generating Chinese data

This is a common usecase, and one that is easy with TRDG.

TextRecognitionDataGenerator Documentation, Release latest

python3 run.py -c 10 -1 cn

This will generate 10 samples using the Chinese dictionary that can be found inin dicts/cn.txt:

T’ S E B 32 B 3% 22 fL B

Since the concept of word in Chinese is a bit trickier, the dictionary is made of single characters (make your own!).
Let’s do this again with —w 5 to get something prettier.

python3 run.py -c 10 -1 cn -w 5

EamiEE HEBIFSR SREHDES
ZmIhak:@B EaAIRKGFEKR U5 FHFIE B IS
HIREND HBSRFKES EMMHEESS
P LA 5k 8 &8

Now that looks better, but what’s up with the spacing between the characters? We would rather have no spaces. Add
-sw O.

1315315 77 10 B A DR F AR
HRE S REFE R SRR RER L
RIERDE EHIRSE SRS EI
S =

Asian scripts can be written top to bottom, you might want to add the —or 1 argument to get vertical text.

python3 run.py -c¢ 10 -1 ¢cn -w 5 -sw 0 -or 1

10 Chapter 3. Tutorial

TextRecognitionDataGenerator Documentation, Release latest

TO0REZELZEH
W Er 8 =8 & 7 Al &2 i
EREHREENKBXF

P

it € B it B -
5 Bk R A B B 58

You can do much and more with TRDG, if you run into a missing feature, simply open an issue.

4

mo 51 < 5o

g
uy
I (=

3.3 Text distorsions

For those familiar with the process of training a machine learning model, you often have to deal with overfitting,
which is when the model gets too good at predicting the samples in the training data and stops generalizing to unseen
examples. One trick to prevent this is by adding the distorsion to the data.

While TRDG does not dwelve too deeply in augmentations, as many better and more complete libraries already take
care of it, some operations are available for convenience through the —d argument which as 3 possible values:

* 0: None

* 1: Sine wave

* 2: Cosine wave
* 3: Random

python3 run.py -¢ 5 -w 5 -d 1

.- . ra T e | gy e e g iy iy g e
L= CAIIS HECH 2 = g _5'___;'9 ol ooy o el | I .._'::'",_j-!',g.:- ARG HET

Marinette unenlightened Okazaki opsy Simpson

e r.

— i .- - it o B | L = = H

= = = o il = = o gor | - o
= S F - a S S e =

metepimeron wipers preoccurred Shaula profanity-proof

mogilalism parasolette Corinth acrologism Dedham

python3 run.py -c¢ 5 -w 5 -d 3

addible bull-grip Ardsley after-grass persistive

3.3. Text distorsions 11

https://github.com/Belval/TextRecognitionDataGenerator/issues/new
https://github.com/search?q=image+augmentation

TextRecognitionDataGenerator Documentation, Release latest

aplancaspore ISOscope uhlecnerously awingers ozZoker e
cruiserweight solicited surveillances planta Conurapsis

delace lenitic ranknesses Ridgeville poleaxe
Edriasteroidena c.h. Finistere rail~-cutting psorospermiform

3.4 A more advanced use case

Text in the real world is not always black, and most importantly, text in the real world is almost never straight. What
if we want to emulate that?

python3 run.py -c¢ 10 -k 15 -rk -bl 0.5 -rbl -tc '"#000000, #888888"

Which can be translated to: generate 10 examples with a skewing angle between -15 and 15 with an added gaussian
blur between 0 and 0.1. Finally, the text color should be picked randomly between black and gray (including all the
colors inbetween).

Sure enough, the output is much more colourful!

an{;ﬂs.&_ﬂs auger's E.t'c-gp_.-,-l_,lwr interpr eting jammfﬂg
pinmaker gurtacety underlevel

WMo i

The default resolution might be too small to your taste (and I agree). By default the output is 32 pixels high because
it’s the height used by most text recognition papers. Now you can change that with —f 64.

python3 run.py -c 10 -k 15 -rk -bl 0.5 -rbl -tc '#000000, #888888' —-f 64

bad-humored “ v -eyeq
buzzier ", €njoined

ergon h.,,;pe.t'e"‘lth

12 Chapter 3. Tutorial

TextRecognitionDataGenerator Documentation, Release latest

Marigene pokerlike

3.5 Manipulating margins

TRDG allows you to control margins around the text using two parameters, ——margins, ——fit. The first one
controls margins, in pretty much the same way the CSS property margin does.

This is the result with no fit and the default (5, 5, 5, 5) margins: python3 run.py -c¢ 1 -1 texts/test.
txt

The quick brown fox jumps over the lazy dog

Now we can add ——fit to apply a tight crop around the rendered text. This changes the size by removing the added
space for accents: python3 run.py -c 1 —-i texts/test.txt —-fit

The quick brown fox jumps over the lazy dog

Margins are applied the generated text, so even with 0, 0, 0, 0, if you don’t use ——fit you will get an apparence of
margins: python3 run.py -c 1 -i texts/test.txt —--margins 0,0,0,0

The quick brown fox jumps over the lazy dog

Now if you add ——fit, you get an absolutely no margins: python3 run.py -c 1 —-1i texts/test.txt
--margins 0,0,0,0 —--fit

The quick brown fox jumps over the lazy dog

Margin values are comma separated top, left, bottom, right, so ——margins 10,0, 10, 0 will return verti-
cal margins with tight cropping vertically.

The quick brown fox jumps over the lazy dog

And finally, with all margins: python3 run.py -c¢ 1 -i texts/test.txt --margins 10,10,10,
10 ——-fit

The quick brown fox jumps over the lazy dog

3.5. Manipulating margins 13

TextRecognitionDataGenerator Documentation, Release latest

14 Chapter 3. Tutorial

CHAPTER 4

Module

TRDG is also a module that can be included in your favorite training pipeline. The easiest way to use it, is to import a
generator.

from trdg.generators import GeneratorFromStrings
generator = GeneratorFromStrings(['Testl', 'Test2', 'Test3'])

for img in generator:
Do something with the pillow image here.

The basic one is GeneratorFromStrings which, as its name indicates, will take a list of strings, and generate an
image and label pair.

If you want to avoid having to maintain dictionaries, you can use GeneratorFromDicts which will use the bun-
dled ones, GeneratorFromRandom which generates random strings, and GeneratorFromWikipedia which
picks random article from Wikipedia as its source for strings.

Here are examples for each of those, respectively:

from trdg.generators import (
GeneratorFromDicts,
GeneratorFromRandom,
GeneratorFromWikipedia,

generator_from_dicts = GeneratorFromDicts ()
generator_from_random = GeneratorFromRandom ()
generator_from_wikipedia = GeneratorFromWikipedia ()

for img, 1bl in generator_from_ dicts:
Do something with the pillow image here.

The generators will not raise StopIteration, they will keep generating images until you break out of the loop.
Set a non-negative value for count if that’s an issue

15

TextRecognitionDataGenerator Documentation, Release latest

16 Chapter 4. Module

CHAPTER B

Reference

Coming soon

5.1 DataGenerator

5.2 BackgroundGenerator
5.3 ComputerTextGenerator
5.4 DistorsionGenerator

5.5 HandwrittenTextGenerator

5.6 StringGenerator

17

	Installation
	Official package
	From source

	Overview
	Most useful arguments
	Getting help

	Tutorial
	Just generating data
	Generating Chinese data
	Text distorsions
	A more advanced use case
	Manipulating margins

	Module
	Reference
	DataGenerator
	BackgroundGenerator
	ComputerTextGenerator
	DistorsionGenerator
	HandwrittenTextGenerator
	StringGenerator

